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1. Abstract 

A software tool for signal processing in health monitoring of water networks is presented. It is assumed that the water 
pressure in the network’s nodes in a distance of inspected area can be measured and also that a diameter of some selected branch of 
the network can be modified in a controlled way. Then, making use of the analytical network model of this installation and using 
presented below, so called Virtual Distortion Method (VDM), the water leakage can be detected and identified (single as well as 
multiple locations and their intensities). The identification methodology takes advantage of gradient based optimization technique. 
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3. General characteristic 

The problem of detection and identification of leakages (mostly due to corrosion) in water networks is an important issue. 
The problem of management of water sources is more and more important in the world scale. On the other hand, the consequences 
of unpredicted failure in the operating water network can be very grave. Therefore, there is requirement for an automatic 
monitoring system able to detect and localize leakages in the early stage of their development. The proposed approach is based on 
continuous observation of the pressure distribution in nodes of the water network. Having  a reliable (verified versus field tests) 
numerical model of the network and its responses for determined inlet and outlet conditions, any modifications to the normal 
network response (pressure distribution) can be detected. Then, applying proposed bellow numerical procedure, the inverse 
problem of the water flow distribution can be performed. The possibility of simultaneous detection of several leakages with 
different locations and intensities is included into the proposed methodology. 

The proposed methodology for the failure identification is based on so called Virtual Distortion Method (VDM) approach, 
applicable also in the problem of damage identification through monitoring of piezo-generated elastic wave propagation (Ref. 3). 
This technique (called Piezodiagnostics) is focused on efficient numerical performance of l inverse, non-linear, dynamic analysis. 
The crucial point of the concept is pre-computing of dynamic structural responses for locally generated impulse loadings by unit 
virtual distortions (similar to local heat impulses). These responses stored in so-called influence matrix allow considering all 
possible linear combinations of local perturbations (due to defect) and their influence on final structural response. Then, using a 
gradient-based optimization technique, the intensities of unknown, distributed virtual distortions (modeling local defects) can be 
tuned to minimize the distance between the computed final structural response and the measured one. 
 
4. Definitions and linear analysis 
Let us describe the network analysis (cf. Ref. 1) based approach to modelling of water systems using oriented graf of small 
example shown in Fig. 1, with topology defined by the following incidence matrix: 
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where rows correspond to the network’s nodes while columns correspond to the branches. 

Defining the following quantities describing the state of the water network: 
H – the vector of pressure (the height of water potential) in network’s nodes 
εεεε  - the vector of drop of pressure in network’s branches 
Q – the vector of water flow in network’s branches 
R – the vector of flow capacity in network’s branches (depends on pipes’ cross-sections, length, material, etc.) 
the following equations governing the water distribution can be formulated: 
 

- equilibrium of inlets and outlets for nodes: 
L  Q = -q                                                       (2) 

- definition of drops of pressure for branches 
LT  H = ε                                                     (3) 

- constitutive relation governing local flow in branches 
Q =- R  ε                                                        (4) 

where q denotes external inlet to the system.    
 
 



 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 fictitious branches 
 real branches  

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 1  Small water network scheme 
 
The constitutive relation (4) is non-linear. Nevertheless, let us assume temporarily linearity of this relation. Substituting Eqs. 
(4) and (3) to (2), the following formula can be obtained: 
 
                                                   L  R  εLT  H= q                                           (5) 
 
Describing the water network shown in Fig.1, the above set of equations takes the following form 
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where:  

)HH(Rq 40
'
44 −= ,   R  = 

l
K2

 , 

K- the characteristic of the element,     
l - the element’s length,  
H – denotes the water pressure in the node (height of water) 
q – denotes the flow in the branch, 

and it was assumed that the network is supplied only through the node No.1 (inlet with intensity q1) and the only outlet is 

through the node No.4 (the coefficient R'

4
=1). 0RR '

3
'
2 == , which means, that the outlets in nodes No.2 and 3 vanish. 

 
Assuming the following data for the small network (R1=0.004, R2=R3=R5=0.016, R4=0.011, q1=0.05 m3/sec, H0=0.0): 
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results in the following distribution of water heights:  Hq = [4,3124, 1,2794  1,9456  0,0500], 
 
5. Modelling of non-linearities by virtual distortions 

Local non-linearity can be included into the system through so called virtual distortion (cf. Ref. 2) ε o  introduced 
into the formula (5): 
 

LR ( LT H - ε 0 ) =  q                     (5a) 
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The influence of virtual distortions on the resultant flow redistribution can be calculated making use of so called influence 
matrix DH

ij describing water pressure HR
i induced in the network as the response for the unit virtual distortion ε o

j=1 
generated in the branch j. Therefore, the vector HR can be calculated from the following equation obtained from Eq.5a: 
 

LR LT HR = LRI,                       (8) 
 
Coming back to our small example, let us generate the unit virtual distortion in the branch No. 4. The corresponding set of 
equations (8) with modifications due to the boundary conditions (cf. Eq. 6) takes the following form: 
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where  ε0
4 =1.   

 
The resulting distribution of potentials is: HR=[0.1508  -0,2513  0.2513   0.0]T 
Applying the same procedure to other branches, the following influence matrix can be determined:  
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6. Water network diagnostics – problem formulation 
The virtual distortion can also simulate leakage from the water network and therefore, can be useful in identification of this 
type of damage. For example, a leakage from the branch no. 4 of our testing network (Fig. 2) can be modelled (with respect 
to a scalar coefficient) through the solution of the following problem (cf. Eqs. 9): 
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where ε0
4 =1. Note, that the compensative load (blue arrows in Fig. 2) models inlet or outlet from the branch No.4. The 

resulting distribution of potentials is HR=-[0.72975  0,72975  0.72975   0.02263]T.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2 Small water network with no leakage 

 
Applying the same procedure to other branches, the following influence matrix can be determined:  
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~ H                           (11) 

 
Let us now formulate the leakage identification problem.  Assuming a leakage in the branch No. 4 of the network 

shown in Fig. 2, let us model this situation adding a node No. 5 (cf. Fig. 3). The corresponding flow distribution can be 
described by the following set of equations (cf. Eq. 6): 
 
 
 
 
 
 
 
 
 
 

   
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig. 3  Modelling of network with one leakage 
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where the following formulas have been applied: 
 

)HH(Rq 40
'
44 −=     and    )HH(Rq 50

'
55 −= , 

 
and it has been assumed, that the only inlet is applied in the node No.1, while two outlets in nodes No. 4 and No. 5 are 
determined by their resistances : R4 and R5.  Assuming also: R2 =R3 =0 and Ri=0.016 (i=6-9), R5=0,004, q1= 0.05 m3/s and H0 
= 0, the above set of equations takes the form:  
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and leads to the solution Hq‘

i=  [3,37274  0,33976  1,00599  0,02086  0.02914]. It can be demonstrated, that the above result 
is equal (taking into account only the first four nodes) to the following linear combination of previously determined solutions: 
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Hq ‘= Hq - 1.2876 HR.  Therefore, the solution of the set of equations (13) can be optionally described as the solution of the 
following optimisation problem: 
 

min f = min ����i [(Hi - Hi
q’  )2]                  (14) 

 
where 

H= Hq +  DHε 0

4
 ≥ 0     (15) 

and:  
- Hq’  denotes the water pressure distribution measured in the network 
- Hq   denotes the water pressure distribution calculated for the initial network configuration 

-    ε0
4  denotes the unknown coefficient simulating water leakage in the branch No.4. 

subject to the following constraints: 
Generalising the above formulation, we can search for leakages in all branches. In this case, the equation (15) should be 
replaced by the following condition: 
 

Hi= Hq
i + ΣjD

H
ijε 0

j
                          (16) 

 

where five unknowns ε0
j  describe potential leakage intensities and the influence matrix DH is determined by Eq. 11.  

 
7. Numerical example 
Let us consider the water network shown in Fig. 2. The heights of the nodes for the network in its natural state, assuming 
linear constitutive relation, are as follows: 
 Hq = [4,3124, 1,2794  1,9456  0,0500], 
The measured heights of the nodes for the network exhibiting a leakage are as follows: 
 Hi

p=  [3,37274  0,33976  1,00599  0,02086  0.02914]. 
The QP solver (cf. Ref. 4) has been employed to find the solution of the leakage identification problem posed by (14), (16). 

One leakage has been identified and the value of the distortion modelling this leakage is  1.2876 -0
4 =ε . 

The development of five unknown virtual distortions, supposed to model leakages, is shown in Fig. 4. 
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Fig. 4 Virtual distortions development in the optimisation process for linear case 
 
In the non-linear case we have analysed the non-linearity of the flow/drop-of-pressure relation through superposition of the 

two following virtual distortion fields: the first one DH ( 10 =β ), modelling physical (constitutive) non-linearities and the 

second one D
~ H

( 10 =ε ), describing leakages. 
The height of the nodes for the network in its natural state are as follows: 
 H = [4,3124, 1,2794  1,9456  0,0500], 



 

while the measured height of the nodes for the damaged network are as follows: 
 Hi

p=  [3,37274  0,33976  1,00599  0,02086  0.02914]. 
The value of the distortions modelling physical non-linearity are as follows: 

 0.0000]0.00000.00000.3079-3079.0[0
j =β  

and the value of the distortions modelling the leakage are as follows: 

 0.0000]1.2876 -0.00000.00000000.0[0 =ε j  

The development of five unknown virtual distortions, supposed to model leakages, is shown in Fig. 5. 
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Fig. 4 Virtual distortions development in the optimisation process for non-linear case 
 
8. Conclusions 

It has been demonstrated, that having numerical model of the water network and knowing nodal pressure distribution 
(measured in real time), current inlets and outlets, the distribution of possible several simultaneous leakages in branches and 
their intensities can be determined. We can expect precise leakage identification if the number of measurements is not lower 
than the number of assumed all possible locations of leakages.  
 Linear constitutive relations has been assumed in the first formulation. Then, the non-linearity of the flow/drop-of-
pressure relation has been taken into account through superposition of the following two virtual distortion fields: the first one, 
modelling physical non-linearities and the second one, describing leakages. 
 
9. Acknowledgements 
The authors would like to gratefully acknowledge the financial support through the 5FP EU project Research Training 
Networks “SMART SYSTEMS” HPRN-CT-2002-00284 and through the grant No. KBN 5T07A05222 funded by the State  
Committee for Scientific Research in Poland. The work presents a part of the Ph.D. thesis of the third author, supervised by 
the first author. 
 
10. References 
1. Lind N.C., Analysis of Structures by System Theory, Journ. Struc. Div., ASCE 88 ST2 April, 1962 
2. Holnicki-Szulc J., Gierlinski J.T., Structural  Analysis, Design  and Control by the VDM Method, J.Wiley & Sons, 

Chichester, U.K., 1995 
3. Holnicki-Szulc J., Zielinski T.G., New damage Identification Method Through the Gradient Based Optimisation, Proc. COST 

International Conference on System Identification & Structural Health Monitoring, Madrid, 6-9 June, 2000, 10p 
4. Powell M.J.D., TOLMIN: A Fortran Package for Linearly Constrained Optimization Calculations, Report 

DAMTP/1989/NA2, University of Cambridge, Cambridge, U.K, 1989 
 


